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FG-AI4H Deliverable 7.3 

Data and artificial intelligence assessment methods (DAISAM) reference 

 

Summary 

This document, Data and artificial intelligence assessment methods (DAISAM) reference, is the 

reference collection of WG-DAISAM for assessment methods of data and artificial intelligence 

quality evaluation. This document also constitutes subsection 7.3 of the FG-AI4H deliverable 7. 

1 Scope 

TBD 

2 References 

Please refer to bibliography lists in the individual sections. 

3 Terms and definitions 

3.1 Terms defined elsewhere 

This Technical Paper uses the following terms defined elsewhere: 

3.1.1 term [reference]: TBD 

3.2 Terms defined here 

This Technical Paper defines the following terms: 

3.2.1 term [reference]: TBD 

4 Abbreviations 

TBD TBD 
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5 Data Quality – Measures, Metrics, and Methods 

5.1 Bias and Fairness 

Authors (alphabetically): Balachandran, Pradeep; Fehr, Jana; Jaramillo-Gutierrez Giovanna; 

Konigorski, Stefan; Lippert, Christoph; Murchison, Andrew; Niehaus, Sebastian 

Introduction and problem definition 

AI-algorithms supporting clinical diagnostic, prognostic and triage and prevention decision-making 

may unintentionally learn hidden features such as clinical context variables to improve prediction 

performance (Badgeley et al. 2019). Learning hidden features (also called confounders) can result in 

algorithmic bias which may yield unreliable predictions when the algorithm is applied on an external 

testset sourced from a population with different distributions of hidden features. Algorithmic bias can 

further be present when an algorithm that was trained with data that only represents a subset of the 

real-world data it is intended for. This can potentially lead to prediction results that are harmful for 

people and unintended by the model creators (Chen et al. 2019). For example, AI systems could 

perpetuate racial bias since the biases already exist in historical data. This may reflect differences in 

biological vulnerability to disease as well as differences in social resources. Identifying algorithmic 

bias is a non-trivial task that requires domain expertise about the targeted use-case scenario as well 

as expertise about methods to identify and mitigate algorithmic bias. Not only in healthcare but also 

in other AI application fields, it is of critical importance to identify learnt hidden features, especially 

sensitive social factors, to assure fairness, avoiding discrimination and unreliable predictions 

(Holstein et al. 2019). The use of machine learning algorithms for clinical decision-making should 

focus on demonstrating clinically important improvement in patient outcomes rather than solely 

performance metrics such as area under the curve and accuracy. It is critically important to ensure 

that all genders, ethnicities, age groups are adequately represented, if the AI-based product is then 

applied to a wide range of patients. Statistical accuracy does not necessarily equal clinical accuracy. 

To address these challenges, tech practitioners need to address the limitations in the machine learning 

algorithms and ensure quality control of their application in various clinical settings and patient 

population and document and state their limitations. 

Aim 

Here we provide a summary of how to understand and identify algorithmic bias at different stages of 

the AI-based product that may have critical implications when the algorithm is applied in a real-world 

clinical setting. The aim is to train the most accurate model for each group without harming any 

minority group of patients. Furthermore, methods to mitigate bias according to the problem at hand 

are provided. These guidelines aim to provide a framework for technologists that build health related 

AI based products to investigate the presence of algorithmic bias. 

Bias definition 

Bias can be considered a systematic deviation in a result compared to the true estimate. This has the 

potential to arise in AI models if the training database is substantially different to the target population 

(defined by the intended use), and may arise in the assessment of the model accuracy if the test 

database is inadequate. As a result, the algorithms may not offer benefit to for example people whose 

data are not represented in the data set. 

Potential sources of bias 

Knowledge of the intended context (domain expertise) and uses of a model should inform the 

identification of bias sources. Potential sources of bias in healthcare algorithms can arise at the pre-
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processing stage (data collection, data preparation) and post-processing stage (model deployment and 

evaluation). 

Pre-processing stage: 

● Representation bias: If the targeted user group and the targeted patient group differ between 

the data used for the development process and the data is intended for. 

● Learning hospital-specific features: Departments in hospitals often have a well-defined area 

of responsibility and rarely treat cases outside this focus. Different departments also often use 

different medical devices. Learning features such as hospital-specific parameters can bias 

predictions. 

● A ‘case-control’ database design could over-inflate measures of accuracy- i.e. if the data from 

a group of patients known to have a given condition is combined with the data from a group 

who do not, cases where there may be uncertainty and in which the model may not perform 

as well are excluded. The test database should ideally comprise a non-selected group of 

individuals reflecting the intended use population as closely as possible. 

● Measurement bias: If variables were measured with different methods of different accuracies. 

I.e. a positive result of a disease is more likely to be truly positive when it was measured with 

test A, rather than test B. 

● Label bias: Annotation and label bias can arise when data was labelled by different 

practitioners with different levels of experience 

● Assigning ground truth- if the ground truth (reference standard) in the test set is established 

by raters who have knowledge of the outcome of the AI model in the test group, this could 

inflate measures of accuracy. 

● ‘Over-curation’ of the data- e.g. if poor-quality MRI scans are excluded, measures of accuracy 

may not reflect the real-world application where noise or artefacts may be common. Similarly, 

if cases with missing data are excluded from the population, the accuracy of the model in the 

real-world setting may be lower than in the test setting. 

● Issues related to data integrity & data quality: Improper procedures on data inclusion and 

exclusion, input and output variable selection, pre-processing methods (data encoding-

decoding formats, data compression and encryption, outlier and missing value treatment). 

● Lack of standardized protocols and tools for data reproducibility (Who, When, Where, How, 

etc.), lack of interoperable data interfaces to collect and integrate diverse data types 

 

Post-processing stage: 

● Historical bias: An algorithm might be biased by social factors especially when training data 

was collected through services, surveys, or social media that are predominantly used by a 

certain social group (defined by ethnicity, religion, gender, …). 

● Representation bias: An underrepresentation of minority or marginalized social groups in the 

training data can lead to unreliable predictions on underrepresented social groups. In this case, 

algorithmic fairness is not guaranteed. 

● Algorithmic tuning: When business heuristics are applied to model outputs e.g. differential 

tuning of performance parameters in order to optimize for chosen business logic (e.g. 

differential diagnosis based on age, gender, ethnicity, etc.) 

● Aggregation bias: arises during model building. If there are two or more distinct populations 

that are inappropriately combined. In that case, the population of interest is heterogeneous and 

a single model is unlikely to suit all minority groups. 
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● Evaluation bias: occurs during model iteration and evaluation. It can arise when the testing or 

external benchmark populations do not equally represent the various parts of the population 

it is applied on. Evaluation bias can also arise from the use of performance metrics that are 

not appropriate for the way in which the model will be used. 

● Deployment bias: occurs after model deployment, when a system is used or interpreted in 

inappropriate ways. 

Bias detection and mitigation methods 

The following sections list qualitative and quantitative methods that can be used for detecting bias 

in AI algorithms. 

Qualitative detection methods 

Directed acyclic graphs (DAGs) 

Causal diagrams are one strategy to systematically identify hidden features (such as demographic or 

hospital variables) that may be indirectly learnt by the algorithm to make predictions. The diagram 

incorporates a directed acyclic graph (DAG) to visualize the interaction and dependence of variables, 

where variables are depicted as nodes and the direction of their influence (from cause to effect) is 

depicted with arrows (Pearl, 1995). Such DAGs can be either constructed based on a priori expert 

knowledge, or also learned from the data using causal discovery algorithms (Peters, et al. 2017). 

When a DAG is drawn to assess the risk of bias of an algorithm, the following variable categories 

and their dependencies on the respective disease and algorithmic output should be considered: Patient 

(age, gender, ethnicity), disease (early onset, late-stage, mild, severe), hospital (department, 

practitioner, device model) (motivated by Badgeley et al., 2019). This list only serves as a starting 

point and can be extended. 

Matched case-control test datasets 

One approach to assess the presence of bias is to create a testset where one or more potential bias 

variables (that were for example identified with a DAG) are equally distributed between the case and 

control group (matched case-control). A risk of bias is present if the prediction power decreases with 

increased controlling of biasing variables. Badgeley et al. (2019) used this approach to determine 

whether the algorithm detected fractures from learned clinically meaningful image features or from 

indirectly learned confounding variables. 

QUADAS-2 and PROBAST: Tools for risk of bias assessment 

QUADAS-2 (Whiting et al., 2011) and PROBAST (Moons et al. 2019) are two example tools that 

assess the risk of bias by systematically reviewing prediction models. QUADAS-2 uses signalling 

questions for a systematic bias assessment in diagnostic accuracy studies. PROBAST is a tool to 

assess the risk of bias of diagnostic and prognostic prediction models, and their applicability for the 

intended population and context using reviewing questions. In the last step of the systematic review, 

PROBAST guides the user to make an overall judgement about the risk of bias in the prediction model 

as ‘low concern’, ‘high concern’ or ‘unclear’. 

These tools may require modification to suit the particular requirements of assessing bias in the setting 

of healthcare AI, but provide a good framework for thinking about how bias may affect measures of 

accuracy. It is also worth noting that these approaches generally rely on judgement to assess the risk 

of bias in certain categories, rather than applying specific metrics. 
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Quantitative detection methods 

DeLong test 

One approach to assess the risk of bias is to control for potential confounders in the testset. This can 

be done by creating a testset that is stratified by the biasing variable (i.e. gender). Subsequently, the 

algorithmic performance, i.e. measured in sensitivity, specificity and others, can be compared 

between these strata. For example, Oakden-Rayner, 2020 stratified the performance of a pneumonia 

classifier between chest x-rays with and without a chest drain. The unpaired DeLong statistical test 

(DeLong et al., 1988) can be applied to test if the area under the receiver operating curves (AUC) of 

the strata are the same. A rejection of this null hypothesis indicates bias. 

Unsupervised k-means clustering 

Unsupervised clustering can be used to detect hidden stratification between subclasses with 

different algorithmic performance. As a concrete example, Oakden-Rayner et al. (2019) applied k-

means clustering on the test dataset’s pre-softmax feature vector using k ∈ {2, 3, 4, 5}. For each k, a 

high and a low error cluster was identified with the largest distance, measured by the Euclidean 

distance of their centroids. It can then be investigated whether underlying parameters are causing 

the performance differences between those clusters. One challenge of this approach can be that it is 

not always possible to achieve a meaningful separation of clusters. 

Regression 

Regression models can be used to quantify the effect of biasing variables on the algorithmic outcome. 

For a continuous or dichotomous or algorithmic output linear and logistic regression modelling can 

be applied respectively, using potential biasing variables (i.e. age and gender) as input. As additional 

covariate, the gold standard test to verify the disease is added in order to control the “true” part of the 

variance that confounders might cover (equation (1)). The parameter estimates of ꞵ serve as a first 

assessment to quantify the influence of the biasing variable on the algorithmic output. Then, 

hypothesis tests of the regression coefficients of the confounders can be used to evaluate their 

association with the score. 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑜𝑢𝑡𝑝𝑢𝑡 =  ꞵ0 + ꞵ1 ∗  𝑎𝑔𝑒 +  ꞵ2 ∗  𝑔𝑒𝑛𝑑𝑒𝑟 +  ꞵ3 ∗ 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 + ϵ (1) 

 

One challenge in the interpretation of regression models is when two covariates are highly correlated 

and if it is of interest to separate the effects of the predictors. This challenge can be tackled by 

removing highly correlated variables, computing principal components of the predictors in a first step 

and using these in a second step in the analysis, or by using approaches as implemented in the 

‘FairML’ package (Adebayo, 2016). 

FairML 

‘FairML’ is a python toolbox that comprises four methods to quantify the dependence of input 

variables on algorithmic predictions. (Adebayo, 2016): 

– Random forest 

– minimum redundancy, maximum relevance feature selection (mRMR) 

– Least absolute shrinkage and selection operator (LASSO) 

– Iterative orthogonal feature projection (IOFP) 
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Linear dependencies between input variables are addressed by the IOFP and LASSO algorithms, 

while non-linear relationships are addressed by Random Forest and mRMR. 

Phi (Φ)-Representativeness metric 

Phi (Φ)-Representativeness (Cabitza et al.) measures the similarity between two datasets. This metric 

can be used to understand to which extent the sampled testset represents the reference dataset (i.e. the 

real-world clinical dataset). Low values of Pi-representative indicate selection bias. It is an alternative 

way of comparing data set distributions equality tests like Kolmogorov-Smirnov test. 

H-accuracy 

H-accuracy (Ha) is an alternative to the regular accuracy (Cabitza & Campagner, 2019). It overcomes 

biased accuracy measures, also called the accuracy paradox of highly imbalanced datasets (Valverde-

Albacete & Peláez-Moreno, 2014). H-accuracy accounts for the importance of rightly detecting one 

class at the expense of the others, the chance of obtaining the correct prediction by chance as well as 

the complexity of cases correctly identified. By considering these factors, H-accuracy is considered 

safe and helps to curb the bias factor of model drift towards 'over diagnosis’. The other advantage of 

H-accuracy is that it can be tailored to a specific diagnostic task by tuning its parameters to make it 

more suitable to the preferences of the domain experts. The parameter configuration can be made 

local (e.g. hospital setting) or for a specialist community, scientific society or association and hence 

this measure can be considered as a parametric version of accuracy (Cabitza & Campagner, 2019). 

GANs 

Conditional generative adversarial networks (GANs) allow to learn and generate class-wise data 

representations. These representations can be used, for example, to test a classification model and not 

only to identify a bias, but also to characterize it. For this purpose, different representations with 

different characteristics are generated for each class. If certain characteristics reduce the probability 

of classification, this characteristic is explored in various combinations and intensities using a 

bayesian optimization. This enables to identify sets in the data, where the classifier is not working 

and to describe them exactly. 

Bias error mitigation methods 

Federated learning 

To prevent a data bias and thus also a model bias, the training data set should contain a broad range 

of characteristics, which is difficult in the healthcare, because often data sets from different 

institutions cannot be merged. Federated Learning is a method in machine learning that allows the 

training of models on decentralized data pools. The setup includes several local nodes and a global 

node, whereby gradients are calculated locally on the local nodes and these are combined into a global 

model. Thus, no data sets have to be merged for medical applications. This allows the acquisition and 

use of training data sets, which usually could not be shared due to data privacy concerns. Larger and 

more comprehensive data sets can be used to train models that, for example, have no geographical 

bias. 

Re-sampling technique (k-fold cross validation) 

K-fold cross validation is a gold standard re-sampling technique used to estimate the model accuracy 

on unseen data. This method looks at splitting the dataset into k parts (e.g. k=10). Out of k parts, the 

model is trained on k-1 parts and tested on the one part maintained separately. This procedure is 

repeated for each part maintained as test data. The result is a more reliable and accurate estimate of 

the model. In k-fold cross-validation the value of k is a design consideration. In error estimation, low 
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values of k results in high bias and low variance and high values of k results in low bias and high 

variance. Typical values of k are 3, 5, 10, etc. 

ConceptNet method 

Using the principle of 'ConceptNet', which is a knowledge base of word meanings, domain-specific 

semantic models are produced from smaller sets of “trusted data” than deep learning normally 

requires. In the ConceptNet based bias mitigation method, models learn from general-domain 

background knowledge base i.e. (by bootstrapping with previously created, general-domain data 

points) in conjunction with domain-specific data. Through this models tend to induce less bias 

compared to that learned from the training corpus alone e.g. this involves starting off deep learning 

models with millions of “common sense” facts, instead of starting from nothing, which can offset the 

bias otherwise introduced by a domain-specific training corpus. This method is also faster than the 

method of “trusted humans” writing rules to maintain the system. 

Adversarial training 

Usually, adversarial training addresses the robustness of models, but biases can also be reduced. 

Similar to bias detection and characterisation, conditional generative adversarial networks (GANs) 

can be used for this purpose. However, in this case further model updates are trained on the additional 

generated representations of the respective class. Thus, adversarial training specifically addresses the 

ability of the predictor to predict underrepresented classes more accurately and consequently to 

eliminate class-wise bias (Zhang, 2018). 

Treating imbalanced datasets 

A standard technique used to address the problem of imbalanced datasets is that of balancing the 

skewed classes (e.g. when one class is over-represented in the data set) in the training data. Here the 

objective is to attain approximately equal number of data samples for both the minority and majority 

classes by balancing their class frequencies. This can be achieved by re-sampling techniques namely 

Synthetic Minority oversampling technique (SMOTE) which attempts to balance the data set by 

creating synthetic data samples. Another robust strategy to deal with imbalanced datasets is that of 

ensemble techniques, where performance of single classifiers is improved by constructing several 

two stage classifiers from the original data and then combining their predictions. State-of-the-art 

ensemble techniques include Adaptive Boosting, Gradient Boosting techniques, etc. 

AI Fairness 360 - a bias detection and mitigation toolkit 

AI Fairness 360 is a comprehensive open-source toolkit of metrics to check for unwanted bias in 

datasets and machine learning models, and algorithms to mitigate such bias throughout the AI 

application lifecycle. It contains over 30 fairness metrics and 9 algorithms that aim to deal with bias. 

It enables practitioners to incorporate the most appropriate tool for their problem into their work 

products (Bellamy, 2018). 

The 9 algorithms are: 

1. Optimized Pre-processing 

2. Disparate Impact Remover 

3. Equalized Odds Postprocessing 

4. Reweighting 

5. Reject Option Classification 

6. Prejudice Remover Regularizer 

Commented [TSB1]: Please confirm, i.e. [=that is] or e.g. 
[=for example]. 
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7. Calibrated Equalized Odds Postprocessing 

8. Learning Fair Representations 

9. Adversarial Debiasing 
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5.2 Perturbations 

Authors: Bruno Sanguinetti, Jérôme Extermann, Enrico 

Reviewers: Tobias, Andrew, Quist-Aphetsi Kester 

Summary 

The reliability of AI depends on the quality of training and inferencing data, as well as on the 

statistical consistency of those two datasets. Here we give recommendations on managing data 

quality so that AI systems are reliable at scale. From the physical sample to final analysis result 

(e.g. diagnostic) data undergoes a number of transformations, accumulating “perturbations”. We 

first describe the typical data acquisition and processing pipeline, splitting it into two logical parts: 

(a) pre-archival processing, where perturbations should be minimised to preserve the statistical and 

metrological properties of the data, and (b) post-archival processing where stronger perturbations 

may be acceptable as soon as these are applied consistently to each data element of a dataset before 

being fed to an AI system. 

We also discuss how including metrological data relating to the expected uncertainty and statistics 

with respect to “ground truth” enables normalization across different data sources, data 

augmentation and uncertainty propagation through monte-carlo methods. Finally, we discuss how 

the importance of data authentication to verify that no undocumented perturbations have occurred, 

malicious or not. 

–––– 

Scaling AI systems from a research environment to worldwide clinical use presents several 

challenges with respect to data quality. AI reliability depends on the quality of training and 

inferencing data, as well as on the statistical consistency of those two sets of data. 

Quality and consistency depend on the entire data acquisition storage and processing pipelines. A 

number of actors are involved in developing, validating and maintaining each stage of this pipeline. 

These stages and activities must be coordinated according to clear interfaces to ensure the reliability 

of AI systems. These aspects become increasingly important as AI systems move from the lab to 

worldwide clinical use, i.e. from an environment where high-end equipment and end-to-end 

expertise are present, to an environment where it is important to select the most affordable 

components that guarantee accuracy and where expertise is clinical. 

In this section we give an overview of a typical data acquisition and processing pipeline, then we 

discuss the overall logic allowing to manage the “distortions” that may occur in this pipeline. We 

then give measures that help evaluating the impact of these distortions, as well as specific examples. 

Data acquisition and processing pipeline 

For the AI-developer to achieve reliable and repeatable results, across a number of systems, it is 

important that he is aware of the full data acquisition and processing pipeline: 

1. A physical sample is prepared (e.g. histopathology slide) 

2. The physical sample is digitized by the acquisition instrument (e.g. slide scanner). This 

instrument typically lightly pre-processes the digital data, and the output of this instrument is 

called “raw data”. The target of this pre-processing is typically to correct errors in the data, or 
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to compute a relevant physical property. This pre-processing should be simple, generic, and 

well documented. Raw data is archived for future use. 

3. Raw data is then retrieved to be used by a post-processing algorithm, typically this is a 

complex pipeline, including a large number of steps. An example is: de-bayering, denoising, 

geometric corrections, normalization, stitching, de-convolution, segmentation. 

4. The post-processed data is then the input to an AI algorithm, for training or inference. 

 

 

Figure x – Caption missing 

Distortion 

Distortion is any process that may irreversibly alter, statistically speaking, the final results of post-

processing. Distortions are accumulated in the data acquisition and processing pipeline. 

 

Effect of distortions in machine learning 

Different distortions, or different distortion parameters, may add degrees of freedom to the sample 

space associated with the measurement, and affect their probability space. Training data should 

span this space, and therefore the amount of training data will grow with the number of possible 

post-processing paths. 

The figure below illustrates the effect of having a single data processing pipeline, vs multiple data 

processing pipelines. In the upper illustration, the data is always affected by the same distortions, 

resulting in a small sample space, which can therefore be densely sampled by training data and is 

expected to yield repeatable and reliable results. 

In the lower illustration, data may undergo different types of distortions, with different parameters 

and potentially in a different sequence, resulting in a much larger sample space, which will be more 

sparsely sampled and yield less reliable results. 
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Figure x – Caption missing 

Deep data processing pipelines are common, as is distortion. Processing pipelines, and associated 

distortions are susceptible to evolve across different systems and versions of the same system. It is 

therefore recommended that the sample data is kept in a metrologically correct format, and that data 

is processed through a single post-processing pipeline before being used for Machine Learning 

applications. In situations where this is not possible, each of the different pipelines should be 

represented in the training data. 

Managing distortions during data acquisition and pre-processing. 

Data acquisition and pre-processing targets the generation of metrologically correct raw data. This 

means that data should represent the “ground truth”, i.e. the measured physical property within the 

specified uncertainty, and according to a specified statistical model. 

It is important that only simple, explainable, reproducible and quantifiable distortions are 

introduced in raw data. 

Simple distortions may be divided in: random errors and systematic errors. Any distortion 

happening on the raw data should specify how these two types of errors are affected. 

Measuring distortions using statistics with a phantom or synthetic sample 

These distortions can be measured using standard metrological techniques, i.e. by analysing the 

statistics of the measurement of a known, stable synthetic sample (or phantom). 

 

Figure x – Caption missing 
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Random errors can be specified in terms of Signal-to-Noise ratio, where (assuming a linear 

system) the signal is the mean of the measured values, minus their offset, and noise is the standard 

deviation. The signal-to-noise ratio is the ratio of those two quantities. 

A distortion may decrease the Signal-to-Noise ratio, and this decrease may be specified in dB. 

The below figure gives an example, from image compression, where a reduction is SNR is 

measured for each potential pixel value. 

 

Figure x – Caption missing 

Systematic errors may be specified in terms of Bias, which gives a measure of how an average 

value change (e.g. mean or median) with the distortion. 

The below figure gives an example (from image compression) showing how for each potential pixel 

value, the bias has been measured. 

 

Figure x – Caption missing 

Measuring distortions in the pre-analysis processing 

Distortions in the pre-analysis processing can be measured via a statistical method relying on the 

comparison of the processing outcomes after distortion with respect to the statistical dispersion 

provided by raw data. Outcomes variability from raw data can be obtained by feeding the AI 

algorithm with synthetic data, obtained by simulating the raw statistical distribution. 
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Figure x – Caption missing 

This method has been applied to a trainable cell segmentation task. The area of single segmented 

cells in a raw image with and without compression is measured. Synthetic raw images, obtained by 

simulating noise in the image after accurate calibration of the acquiring camera, are used to find the 

uncertainty of the values obtained from the uncompressed data. The dispersion of the results 

obtained with compression, estimated over all segmented objects, can be compared to that obtained 

from synthetic raw data. This measure can be used to validate a specific distortion in the pre-

analysis processing. [ref to our paper] 

 

 

Figure x – Caption missing 

Figure … a, b) Phase-contrast micrograph of cells and segmentation mask. c) Distribution of the 

single-cell area difference obtained with raw and compressed image (blue), as well as with raw and 

simulated images (red). 

 

 

Normalization 

As systems scale, data from different sources (e.g. instruments from different manufacturers, or 

different versions of the same instrument, different sample preparations etc.) will be used in the 

context of the same AI model. Each of these systems will have applied to the data different 

perturbations. However, if data is available in a raw format, and its metrological properties are 

known, it may be normalized, and validated before being fed to post-processing and AI. As an 

example if a microscopy sample was taken with an effective pixel size of 500nm and a point-spread 

function of 750nm and another with a pixel size of 400nm, and a point-spread function of 700nm, 

they may be resampled to have the same effective pixel size and point-spread function, increasing 

the reliability of AI results. 
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Figure x – Caption missing 

 

Data authentication 

Perturbations may occur at any time, intentionally, unintentionally or maliciously (e.g. through a 

cyberattack). Therefore, before being used in AI systems, data must be authenticated. This may be 

achieved by the equipment manufacturer providing a mechanism to validate such data, such as a 

cryptographically signed checksum of the data. 
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5.3 Summary statistics for data quality 

Author: Kherif, Ferath 
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5.4 Data set splitting 

Authors: Stephane Ghozzi, Joachim Krois, Alberto Merola 

Why data splitting? 

Evaluating a model entails gauging its generalisability: After it was trained and implemented, how 

should one expect it to perform on new data? To mimic this situation, the evaluation should not 

happen on data seen for learning the internal model parameters: The data set has to be split. 

Specifically, one otherwise risks overfitting the model on the data seen, following them too closely 

and reproducing meaningless noise. 

One usually considers three independent sets: 

- the training set for fitting internal parameters; 

- the validation set for finding the best settings (hyperparameters as well as which features are 

included); 

- the test set for the final evaluation. 

As described below and in the next section, crucial properties of the set-up in which the model is 

applied as well as the quantity of data available should be considered for how to split. With those 

constraints, data points are then attributed at random to each set, thus reflecting (apparently random) 

factors that one cannot account for or shouldn’t play a role. 

In particular, each set should be a sample representative of the whole population, meaning all 

values or ranges coming up in the whole data set should also be present in each set. For example, in 

a binary classification task, each of both classes should be present in at least a few exemplars in 

each set, otherwise evaluation scores cannot be computed! This is true also for the features. 

Imbalanced data sets, where some classes are rare, thus can prove difficult for the evaluation (as 

well as for the learning itself). 

Lastly, especially on smaller data sets, the evaluation scores will depend to some extent on the 

particular sampling applied to generate the different sets. Thus, as always when working with 

random variables, one should generate many different realizations of set splitting and consider the 

statistics of evaluation scores. This is crucial for sensibly comparing different models: Is one 

significantly better than the others? How much and how reliably so? 

See e.g. [1,2] for more details. 

Note that after models have been evaluated, the best one(s) should be trained on all available data 

before being put in production! 

Splitting strategies: Time series 

For data taking the form of time series, time implicitly plays a crucial role, meaning the fact that the 

new data come chronologically after available data is important. In that case, the (validation and) 

test set(s) have to include data that succeed the training set. This means that the (validation and) test 

set(s) are necessarily contiguous in time. In cross-validation and to gauge the stability of the 

evaluation, the size of the training set will vary with each splitting: Smaller for earlier test sets, 

larger for the later ones. See e.g. section 3.1.2.5.1. of [2]. 
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Cross validation 

Cross-validation (or CV) is an approach for model validation used to assess how the results of a 

statistical analysis will generalize to an independent unknown data set, that is how the model will 

perform in practice. Cross-validation combines prediction precision measurements to derive a more 

accurate estimate of the model’s predictive performance (Grossman et al., 2010). 

Cross-validation is typically an iterative process, in which at each iteration a sample of data is 

divided into two complementary subsets: one used for the model fitting (the training set), and the 

other for validating the analysis (the validation or testing set). For a more robust estimate of the 

model's predictive performance, multiple iterations are performed using different data set partitions, 

and the results are combined (for example averaged). 

Every model training process involves fitting the parameters or weights of the model to the training 

data set as well as possible. If the trained model is then used to predict an independent sample of 

validation data, it will generally perform worse. While a difference in performance is to be 

expected, high discrepancies are symptomatic of problems in the training of the model and might be 

due, among others, to the amount of data available. In particular, discrepancies in performance are 

likely to be large when the size of the training data set is small, either in absolute terms, or 

relatively to the number of parameters in the model. The latter case typically results in overfitting 

(Tetko et al., 1995). Cross-validation helps to estimate the size of this effect. 

Cross-validation has been shown to be a nearly unbiased estimator of the model performance 

(Christensen, 2015). On the other hand, due to the large variance of the estimates, if two models are 

compared based on the results of cross-validation, the one with the better estimated performance 

may not actually be the best performing. 

Cross-validation methods can be categorized into two groups: exhaustive and non-exhaustive. 

While the former methods iterate on all possible ways to divide the original sample into training and 

validation sets, the latter do not. The most exemplary cross validation method is an exhaustive one: 

the leave-one-out (LOO) cross-validation. 

Leave-one-out cross-validation 

Leave-one-out cross-validation (LOO CV) involves using 1 data sample as the validation set and 

the remaining observations (N-1, where N is the data set size) as the training set. This is repeated on 

all permutations of the original data set with a validation set of 1 sample and a training set of N-1 

(Celisse, 2014). 

LOO CV is a specific case of leave-p-out cross-validation (LpO CV), where at each iteration sets of 

p and N-p samples are considered. Notably, LpO CV with p=2 has been shown to be an accurate 

method for estimating the area under ROC curve of binary classifiers (Airola et al., 2011). 

Class Imbalance 

A dataset is said to show class imbalance when its observations present a disproportionate 

distribution among the classes (or categories) that constitute the given dataset. In other words, some 

classes are overrepresented compared to others. The former are commonly referred to as majority 

classes, while the second as minority classes. This might be a problem in classification tasks, 

because most machine learning algorithms assume that data is equally distributed among classes. In 

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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the presence of class imbalance this condition is violated and the classification tends to be biased 

towards the majority class. 

Ideally class imbalance in the dataset is to be avoided, although this might not be possible, either 

because there is no control over the data acquisition or because of the very nature of the data 

distribution. Notably, many data types in the physics and social sciences domains are characterised 

by a naturally imbalanced data distribution and follow a power law probability distribution (aka 

Zipf’s law, see Wikipedia: https://en.wikipedia.org/wiki/Zipf%27s_law). 

Multiple strategies are available to tackle class imbalance and improve classification performance 

and depend, among others, on the specific predictive task and on the specific metric used to 

evaluate the algorithm. Some of them act at the algorithmic level and therefore won’t be touched 

upon here. 

The strategies that focus on the data set and its splitting approaches can be grouped in 3 different 

categories (Branco et al, 2015):  

1. Up-sampling of minority classes: randomly duplicating observations from the minority 

classes, in order to balance the distribution. This comes with the caveat that no new 

information is introduced in the dataset. 

2. Down-sampling of majority classes: removing random observations from majority classes. 

This might be problematic in case of data scarcity, although . 

3. Generating synthetic samples: new synthetic samples are generated from the original data 

sample. Typical approaches include creating new samples based on the distances between 

the point and its nearest neighbours or based on the distances for the minority samples near 

the decision boundary, either in a fully automated or semi-automated fashion. Similarly, 

trained AI models like generative adversarial networks (or GANs, (Goodfellow et al., 2014)) 

can be used to generate data sets with a balance class distribution. 
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6 AI solution quality – Measures, metrics, and methods 

6.1 Explainability 

Authors (alphabetically): Fabian Eitel, Luca Gilli, Shalini Kurapati, Kerstin Ritter, Anne Schwerk 

Explainable AI Considerations 

Explainable AI (XAI) is as crucial as AI models themselves, as XAI enables not only trust but also 

control, which is crucial if we lack a visible model. Broadly speaking, XAI fulfills four primary 

needs (see Figure X): 

1) XAI enables the necessary control for counteracting bias, such as measurement errors or 

wrongly labeled data. This deep error and model understanding allows us to detect possible 

weaknesses and thereby speed up training and development times, as mistakes are readily 

detected and improved . 

2) XAI allows for liability, which is crucial in establishing accountability and a necessary 

prerequisite for GPs, which have to execute those systems and hence need to understand the 

outputs and its consequences – including possible errors. 

3) Fairness is also crucially enabled by XAI, by providing insights into the models, the data, and 

its learned predictions and thus to prevent discrimination towards subgroups, such as females 

or ethnic subgroups. Unfortunately, most algorithms are purely optimized towards efficiency 

and are completely neglecting fairness 

4) Finally, the most important aspect for scientists, model insights and mechanistic actions can 

also only be discovered when those are transparent, which then allows generalization and 

transfer to be established – thereby improving replicability and allowing for certain degrees 

of causality. 

 

 

Figure X – Caption missing 
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Challenges in different transparent AI Pipeline stages 

Given that AI is produced over a multi-step pipeline, where each step can be prone to possible bias 

and errors, one should consider the entire development process for the later to be deployed models. 

In the following and also in Figure XI, the different steps of the pipeline are considered to ensure 

transparency and retraceability. 

 

 

Figure XI – Caption missing 

 

1. Data collection 

The data collection process can cause many bias sources, and as AI will extrapolate these, the 

control of correctly sampled data is crucial. A very common bias during data collection is the so-

called sampling bias, which is due to non-representative data samples. This phenomenon is 

currently seen during the COVID-19 analyses, which are based on data that is not representative, 

due to limited testing of solely symptomatic patients. Thus data samples need to reflect true 

populations and the actual diversity and distribution in order to allow for proper and generalized 

deployment. Another common bias, is the labelling bias, which is due to biased data or biased labels 

and can be circumvented in some scenarios by including intra/inter rater reliability measurements 

that identify errors within one labelor and between two independent labellors respectively. 
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2. Data Wrangling 

As data scientists spend most of their time pre-processing data and only 20% in the actual 

modelling phase, those pre-processing procedures should be very transparent and traceable to allow 

for control and replicability. For example, when addressing missing values, those may be missing 

for protected groups in a non-random fashion which makes accurate predictions hard to render. 

Also, it is not clear often, which data can be considered true outliers or how to handle true outliers. 

For example, mean imputations can strongly bias towards the mean. Thus, a way to ensure 

standardized data cleaning would be highly needed, similarly all transformations should be 

automatically captured to ensure data lineage. 

Another crucial pre-processing step is the process of feature engineering, which allows to isolate 

key information, highlight patterns, and bring in domain expertise. Yet this step is prone to 

subjective decisions, including the inclusion of redundant features which can then cause overfitting 

or the deselection of correlated features, which can be subjective and introduce bias. Therefore, a 

good way would be to also include internal or external cross-validation of the feature engineering 

and selection process and to take the sum, difference, product, or quotient of multiple features. 

3. Model training and optimization 

The absence of human oversight and involvement during training of DL models should be avoided 

or controlled by post-hoc oversight and insights, as there are many possible error sources and most 

algorithms are purely optimized towards efficiency and accuracy as opposed to human needs, e.g. 

weighting for the most fastest treatment and not one that is tailored to quality of life of the patient. 

Yet, there are handy ways to control ethical and fair decision making of the models. One useful 

implementation to ensure control during model training can be regularization, which consists of 

adding a penalty to the different parameters of the model to reduce the freedom of the model. 

Hence, the model will be less likely to fit the noise of the training data and also less likely to be 

overfitting. 

Another necessary control assumption that should be met is demographic parity, which implies that 

the classifier should make positive predictions on a protected population group at the same rate as 

the entire population. Similarly, the assumption of equal opportunity implies that a classifier should 

have equal true positive rates and also False-positive/negative rates on a protected population as 

those of the entire population. In addition, algorithm augmentation (e.g. Lagrangian approach) can 

incorporate fairness into the training algorithm itself, by penalizing the impact of biased samples, 

e.g. a mathematical technique called Lagrange multipliers uses fairness constraints (e.g. 

handicapped people should be hired at the same rate as non-handicapped people) to influence the 

loss in the training algorithm. Even though this is challenging to implement, as it adds considerable 

complexity to the training process, those technologies can have significant meaning for self-

learning systems. 

In certain scenarios, a randomization of algorithm optimization is needed, as these allow that the 

algorithms randomly change between different rules, to prevent the domination of certain rules. 

4. Biased outcome metrics 

Biased outcome parameters are often used in medical analyses, as this sector is highly complex and 

affords lots of domain knowledge to ensure proper analytics. For example, the variable of 

healthcare cost can disguise unequal access of different populations, when used for approximating 

healthcare needs, as less budget is spent on certain subgroups of patients who have the same level of 

need. 

Though AUC and AP are proven to be effective metrics for measuring the performances in 

imbalanced datasets, a high score does not necessarily mean that a model makes a clear distinction 

between patients. 
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5. Cross-Validation 

One of the very crucial steps, as this ensures real-world applicability, yet this is often not addressed, 

as actual ‘test’ data sets are mostly only available when the systems are deployed. 

6. Deployment 

When the AI solution is finally deployed, the system should entirely be re-evaluated, as the context 

and new data can adjust many previously met assumptions, such as equal true positives or false 

positives or false negatives. 

Need for Explainable AI (XAI) Standardization 

1. No ground truth for Post-hoc XAI 

2. No overlapping Post-hoc XAI methods 

3. Unconsidered AI Pipeline 

4. Unaddressed need for user-centred XAI (adaptive, interactive) 

Degrees of Good AI Explanation Systems 

It is not very clear to define a good explanation. Basically, a good explanation implies that is is 

understood by the user, which implies a complex interaction between: (1) the offered explanation, 

(2) the receiver's knowledge and beliefs, (3) the context of the situation, and (4) the receiver’s goals. 

Thus to ensure human-level understanding is already a complex process, and it has to consider 

different end-user contexts, and hence, in order to consider all of these aspects, precise experiments 

with different users would be required, such as the patients, their relatives, clinciscians, scientists, 

and developers. 

Nonetheless, some general features can be defined, that are crucial for ensuring understanding: 

– Causal relationships and counterfactual faithfulness are easy to grasp concept, as are 

explanations based on examples and comparisons 

– It is useful to show limitations of predictions, in order to not disappoint and create mistrust 

– Humans can best understand low dimensional spaces and logical arguments that are clear, 

precise and complete 

As people differ in their satisfaction threshold, with some being satisfied with simple or superficial 

explanations that reference fewer causes, and others need very granular explanations, ideal 

explanations are interactive and user-centered. 

Evaluation Criteria for Explainable AI (XAI) 

1. Confidence measures to training examples 

2. Empirical evidence 

3. Theoretical guarantees 

4. Standards such as IEEE -P7001-Transparency of Autonomous Systems 

5. Robustness, Reliability measures, generalizability 

6. Consistency of XAI models 

7. Enforce experimentation to ensure validity 

8. Ensure human-level understanding 
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Explainable AI Interpretability Classification 

– Local XAI Vs Global XAI 

– Local XAI : Ability to understand individual decisions for a particular case or feature 

– Global XAI : Tries to explain-How does the model reason? 

 

Methods of Posthoc Explainable AI 

a. Input perturbation LIME, SHAP method, occlusion, etc 

b. Signal method-input method based on activated neurons (Activated Max.) 

c. Proxy mechanism: simplifying ANNs, e.g. DeepRed 

 

Challenges of Posthoc Explainable AI 

a. Interaction effects 

b. Computationally intensive 

c. Slow 

d. Lack of overlap between methods 

e. Lack of Ground Truth 

 

Methods of Antehoc Explainable AI 

a. Verbal decision path 

b. Heuristic input attribution (Saabas) 

 

Challenges of Antehoc Explainable AI 

a. Insufficient for multiple trees 

b. Tree-depth bias for feature relevance 

c. Slow and Sampling variability 

 

Measures of Explanation Effectiveness for the DARPA XAI Psychology Explainable AI 

Program 

1. User Satisfaction 

a. clarity of the user explanation (user rating) 

b. utility of the user explanation (user rating) 

2. Mental Model 

a. Understanding individual decisions 

b. Understanding overall model 
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c. Strength /Weakness assessment 

d. 'What will it do' prediction 

e. ‘How do I intervene' prediction 

3. Task Performance 

a. Does the explanation improve user's decision,task performance 

b. Artificial decision tasks introduced to diagnose the user's understanding 

4. Truth Assessment 

a. Appropriate future use and trust 

5. Correctability 

a. Identifying errors 

b. Correcting errors, continuous training 
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An Overview of Attribution Methods 

1. Saliency analysis (Gradient) 

 Backpropagating the network’s gradient into the input space. I.e. taking the 

partial derivative with respect to the input, rather than the weights as in 

backpropagation updates. 

2. Gradient*Input 

 Multiplying the output of the saliency analysis with the original input. Allows 

to scale the attribution to the features, removing the effects of different 

feature scales. 

3. DeconvNet 

 Adaption of saliency analysis which checks for activation of the model’s 

ReLU nodes on the backpropagation rather than the forward pass. 

4. Guided Backprop 

 Adaption of saliency analysis which checks for activation of both the forward 

and backward passes. Only backprogates when both are active. 

5. Layer-wise Relevance Propagation (LRP) 

 Based on taylor decomposition, uses the score rather than the gradient, 

conserves total relevance in between layers, multiplies with the activation at 

each layer. 

6. PatternNet & PatternAttribution 

 Adaptations of LRP, finding a better suitable reference point than LRP which 

uses the origin. 

7. ... 

2. Quantification methods: 

1. We have used regional quantification based on brain atlases to judge the quality of 

attribution methods. Brain MRIs are strongly registered and atlases are available in 

the common MNI space. By computing the attribution per brain region one can 

determine if the model finds clinically relevant regions to be of importance or 

whether artifacts influence the decision. See Böhle et. al and Eitel et. al. 

3. Others: 

1. Words of caution see Adebayo et. al and Kindermans (2019). 

Taken from Kindermans et. al 2017. Take the author’s preference into consideration. 
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6.2 Bias and fairness 

Please refer to Section 5.1 (“Data Quality - Bias and Fairness”) 

 

6.3 Robustness 

Authors: Federico Cabitza, Saul Calderon, Jörg Martin 
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Reference Summary 

Overview 

Modern artificial intelligence solutions are mostly data-driven approaches, relying on large training 

datasets. Such training data need to be representative enough of the problem at hand, improving 

model accuracy with unseen testing data, namely model generalization. Within this context, 

robustness refers to the ability of a model to retain its accuracy performance to significant data 

changes from training to test data, or at least, make the user aware of the abnormal operation 

conditions (see explainability section). 

The following are major sources of data instability (difference between training and testing data): 

1. Outliers: Isolated extreme values in the test set not seen in the training data might 

considerably perturbate the model output [4]. 

2. Data distribution mismatch: The distribution of the training data might be significantly 

different to the distribution of the test data [5]. 

3. Adversarial attacks: In different applications, external attackers might be interested to 

deceive the model, by hijacking it with artificial adversarial inputs [1]. 

 

Measuring robustness can be done from different perspectives or a combination of them: 

1. In the input space, using both training and test data samples. The distance/dissimilarity or 

distribution mismatch can be measured as advised in [2]. Measuring training and data 

discrepancy can suggest how challenging the scenario is for a model in terms of retaining 

its accuracy or explaining its accuracy decrease. Also data representativity (sparseness or 

heterogeneity [3] ) can be measured in both the training and test datasets. 

a. A specific robustness scenario is noise in the data labels. A model can be considered 

robust if its accuracy does not change much when trained with high degree of noisy 

labels. 

2. In the feature space: Modern AI solutions make extensive use of deep learning architectures. 

These architectures often learn a feature space from the data, making its usage more feasible 

for measuring training and test data similarity [3]. . 

3. Model output: Model output perturbations to significant training and test data mismatch. 

The sensitivity of the model to an increasing training to test data/features to discrepancy is 

a common approach to define model robustness [62,66]. 

Therefore, we can define robustness as the rate between model output perturbation and training-test 

data dissimilarity. Robustness assessment is of key importance in medical applications, as the input 

test data perturbation is a frequent challenge in real-world medical AI systems. 

 

Measures and Recommendations 

Dataset distances and mismatch 

Dataset representativity assessment 

Outlier testing (generative methods [52,53], Bayesian uncertainty [62,66]) 

Uncertainty quantification (Gaussian Processes [62], aleatoric uncertainty for deep learning AI 

systems [67], epistemic uncertainty for deep learning AI systems [66]) 

 

 

Robustness validation 

See Uncertainty robustness validation approaches 

 

Alarm systems 

Outlier tests (generative methods [52,53], Bayesian uncertainty [62,66]) 

Attribution methods (gradient*input [54], integrated gradients [55], layerwise relevance 

propagation [56]/deep Taylor decomposition [57], perturbation-based attribution [58]) 

Uncertainty quantification (Gaussian Processes [62], aleatoric uncertainty for deep learning AI 

systems [67], epistemic uncertainty for deep learning AI systems [66]) 

 

References 
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Introduction 

Modern deep learning solutions are labelled data hungry. They need high quality labelled and 

representative enough data. Test data might have a different distribution, either with isolated (rare) 

cases, known as individual outliers, or in a more challenging scenario, might consist of collective 

outliers, leading to distribution miss-match of the training and test dataset [1,2]. Also, test data can 

include what is known as adversarial attacks, launched by external malicious agents aiming to 

deceive the model [3]. Also, an usual perturbation is data imbalance in either the training or test 

data [9]. Aside from perturbations coming from the test data, the training dataset can also include 

perturbations. Noisy inputs [5] and labels [4] are a frequent short-coming faced in real-world 

machine learning applications. Robustness can be defined as the ratio between the accuracy of the 

model variation and the amount of perturbation applied either to the training/test data or the labels 

of the training data. 

a𝑛𝑜_𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 − a𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛
∆𝑥

 

where ΔX refers to the perturbation applied to the training/test data. 

1. Training and test data distances 

A simple robustness measure based in the distance between the train and test dataset is defined as 

follows [7,8]. The main idea is to try to match each data point in the test set with those in the 

reference population: after exchanging the matched objects we then assess if there has been any 

changes in the topology. 

More precisely, the method to compute the Φ is the following one: 

1) Compute the distance distribution in the larger group (e.g., training set) 

2) Match each object in the smaller sample (e.g. the test set) with the most similar object in the 

larger sample. 

3) Then substitute the objects in the larger dataset and check if there is a significant difference 

between the pre- and post-substitution distance distributions with an equality test. 

4) The value of Φ is equal to the p-value. 

Then the robustness of the model is defined as: 

𝑅 =
𝐻

1 +Φ
 

Thus the robustness of the model has its maximum value (equal to the value of H) when Φ is equal 

to 0 (so the training set and the test are maximally different) and minimum value (equal to H/2) 

when Φ is equal to 1 (when the test set is essentially a subset of the training set). 

 

Out of distribution measures 

The distribution of the test data, making it different from the distribution of the training data. This is 

known as out of distribution problem. In the literature a wide range of out-of-distribution detectors 

have been developed, implicitly or explicitly manipulating out of distribution measures [2]. 

Simple measures can be implemented, such as the entropy of the softmax from the output layer in a 

neural network, or the maximum value of the output layer REF. 



- 36 - 

FG-AI4H-I-035 

Data heterogeneity as perturbation 

The heterogeneity, sparseness or “representativeness” of the training data can also be an indirect 

measure of the training data quality, hence also the robustness to variations of this aspect can be 

measured [7]. 

Distribution mismatch or training to test data distance can alternatively be measured in the feature 

space. Common deep architectures learn the feature space from data. The feature space has a lower 

dimensionality, easing further computations. The work in [7] implements the coefficient of 

variation of automatically learned clusters in the feature space. 

The approach in [7] performs data clustering resulting from the fuzzy k-means algorithm. The 

coefficient of variation is measured as follows 

𝛿 =
1

𝐶
∑

�̅�𝑖 − �̅�𝑗
𝑠𝑗

𝐶

𝑖,𝑗

 

The coefficient of variance 𝛿 is calculated for a number of clusters C, with centroid x and standard 

deviation s. A lower coefficient of variation is correlated to lower data heterogeneity. In [7] two 

different medical imaging datasets were used to measure 𝛿with different dataset sizes. As 

expected, 𝛿 decreases with a larger dataset, and reaches a stable point, depending on the dataset. 

 

Figure x – Missing caption 

The accuracy vs the coefficient of variation can be used as a robustness measure. This is plotted as 

follows. 

[CHECK IF WE CAN INCLUDE IMAGE] 

Noisy labels 

Noisy labels are a frequent short-coming in different domains, and also in the medical domain. High 

quality datasets are expensive, as good labels need a number of experts labeling each observation. 

The use of a normalized metric for robustness to label noise is still not extended. However, 

literature on label noise robustness is increasing. For instance, in [10,11], the usage of pretraining 

and self supervised learning (respectively) is tested to measure the robustness increase to noisy 

labels. The plots below show the accuracy of the model at different degrees of adversarial label 

corruption. 

[CHECK IF WE CAN INCLUDE IMAGE] 
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Input noise and degradation 

Noise in the inputs, as in images and data records is also usual in both training and test datasets. For 

images, deep learning architectures are known to be robust to common gaussian noise and 

impulsive noise [5]. However other types or degradations can hinder model’s accuracy [5]. 

In [12] an extensive testing of different CNN architectures is performed to different types of input 

corruption. The next Figure enlists common types of image input degradations. 

[CHECK IF WE CAN INCLUDE IMAGE] 

Authors proposed a summarized metric for all the types of corruption tested, as seen below: 

 

 

 

Robustness can be measured using bounds, defining tolerance intervals 

 

Class imbalance as a perturbation 

Class imbalance is also a usual shortcoming faced in practical applications. For instance, in the 

medical domain, is hard to get observations of certain pathologies, leading to strongly imbalanced 

datasets. Measuring the robustness to data imbalance and correcting it, can be useful in different 

settings. In [15], the robustness of different deep classifiers to data imbalance is analysed. 
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Machine learning, robustness and health applications 

Machine Learning is a flexible, powerful tool that has shown remarkable successes especially in 

cases where the design of an explicit algorithm might be too evolved or even impossible to perform. 

The key idea of using a generic model and adjusting it using data comes, however, with a price. 

While the trained AI might perform well in practice, it is usually hard to understand why it works 

(Olden & Jackson, 2002). This immediately raises the question if we can trust an AI build with 

machine learning. Szegedy had in 2013 the discomforting inside that it's in fact rather easy to fool 

such a system (Szegedy et al., 2013). We can find a small perturbation of the input, often on a scale 

that's imperceptible to a human, that will lead the AI to a wrong decision. These adversarial 

examples seem to exist for all kinds of applications provided the data is sufficiently high 

dimensional (Goodfellow et al., 2014), (Kurakin et al., 2016). 

Relevance to medicine 

For a medical application of AI the existence of adversarial examples is relevant for two reasons: 

– Obviously, they allow for human manipulation of such systems, which might be done for all 

kinds of motifs including for instance insurance frauds (Mirsky et al, 2019). 

– But even neglecting the risk of human manipulation, robustifying against adversarial 

examples has shown to be a good defense against unexpected behavior of a system in practice 

(Shaham et al., 2018). 

Metrics and strategies 

Strategies to cope with the issue of adversarial attacks can be split into two philosophies: 

– Including adversarial examples while training and thus robustifying the system. 

– Detect adversarial attacks in the input before they are handed to the AI. 

The first method is known to robustify the AI and also to increase its general performance. 

However, it only applies to the adversarial attacks used in training and can only be applied during 

training time and by someone who is in possession of a suitable dataset. 
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Methods to detect adversarial examples are 

– Using another AI for detection (Metzen et al., 2017), (Xu et al, 2017) 

– Using quantities that evaluate the trustworthiness of the input, such as 

o Entropy and mutual information (Feinman et al., 2017) 

o Uncertainty, e.g. using Variational inference or dropout (Smith & Gal., 2018), (Rawat et 

al., 2017) 

o statistical quantities such as the Fisher information (Martin & Elster, 2019) 

While using AI systems seem to achieve the highest performance rates, they suffer once more from 

the “Black Box” property and are thus explaining why an input is classified as adversarial. 

Statistical quantities often have a rather clear interpretation and can even be used to visualize 

unusual regions in the input (Martin & Elster, 2019). 
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6.4 Generalization 

Authors: Alexandre Chiavegatto Filho, Federico Cabitza 

 

The ability to generalize a model, i.e. how well it can correctly predict the occurrence of events when 

exposed to a new set of data, depends on a balance between the bias and the variance of the model. 

Bias in machine learning, if not controlled, increases training and generalization error by 

oversimplifying model assumptions. Variance, on the other hand, happens when small fluctuations in 

the training set lead to a significant increase in generalization error. Some important issues arise when 

trying to achieve a balance between bias and variance. 

Importance: 

Machine learning is a practical area that requires simulations to verify generalization potential. It is 

increasingly possible to understand how the automation of procedures can facilitate the daily lives of 

health professionals, from simple tasks to the most complex ones (Obermeyer & Lee, 2017; Rajkomar 

et al., 2019). The goal of most machine learning studies is to one day apply the models in real world 

settings, which means the algorithms must be generalizable to new datasets. 

Generalization types: 

a. Local Generalization: when the objective is to predict an outcome using data from the same 

location as the training set. Also known as internal validation or reproducibility (Steyerberg, 

2019). 

Limitation: new data may not follow the same pattern over time as the data used in model 

training: new interventions may be introduced after the training set was collected and new 

diseases may emerge. 

b. Extrapolation: There are increasing challenges when the objective is to extrapolate, that is, to 

apply the model to a different area from the one used in training the algorithm. It is also 

known as external validation or transportability (temporal, geographical, methodological and 

spectrum) (Steyerberg, 2019). 

Limitation: The algorithms need to be applied to plausibly related populations, i.e. populations 

in which there are similar relationships between the predictors and the outcome. However, this 

is hard to be tested empirically and could increase prediction error. 

How to generalize? 

To assess the potential generalization ability of a model, it is necessary to use a test sample, preferably 

by following these steps: 

I. First, the sample must be divided into a training set and a test set. The training set can be further 

subdivided into a training set and a validation set in order to tune hyperparameters (or by using cross-

validation exclusively in the training set). The test set will only be analysed at the end, in order to 

measure the actual performance of the algorithm. 

II. Pre-processing is a crucial step to guarantee model generalization, which frequently consists of: 

– Verifying the need for data standardization (regarding scaling and missing data); 

– Exclusion of variables that allow the algorithm to identify the outcome, i.e. that is a proxy for 

the outcome (known as data leakage); 

– Exclusion of predictors with high correlation, or application of dimensionality reduction 

techniques; 

– Exclusion of predictors with degenerate distribution or variance close to zero; 
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– Transformations in qualitative predictors (by applying one-hot encoding or dummy 

transformations); 

– Treatment of missing data (removal of observations, create a new category for missing values 

in case of categorical variable, or imputing by interpolation); 

Note: The data pre-processing step occurs only with information from the training data (e.g. in the 

case of calculating the mean and the standard deviation for variable scaling), in order to prevent the 

algorithm from learning from the test data. 

III. Hyperparameters are optimized with a validation or cross-validation sample. This adjustment is 

necessary to improve the generalization performance of the algorithm in order to avoid overfitting 

and to balance the trade-off between bias and variance; 

IV. The final model is trained in the entire training set and its parameters are recorded; 

V. Performance is then measure in the test set, i.e. the algorithm makes prediction for the data set 

separated in the initial phase, which allows to estimate the efficiency of the algorithm in an unknown 

data set; 

VI. Most common model performance metrics: 

– Regression Model: Mean Squared Error (MSE) or Root Mean Squared Error (RMSE); 

– Classification Model: Accuracy, Sensitivity, Specificity, F-Score and AUC. 

After analysing predictive performance in the test, new questions arise: 

2.1 Will the prediction work in clinical practice? It is necessary to understand the reality of where 

the prediction will later be performed, and which are the possible problems when incorporating it 

into clinical practice. It is necessary to understand, for example, whether there will be resistance 

from doctors and other health professionals to use the results of predictive models. In addition, it is 

necessary to understand possible abnormal variations of the data and other reasons that may prevent 

the prediction from working in its practical use (Ghassemi et al., 2019). 

2.2 Similarity of variables. If the training dataset has the same variables as the target generalization 

dataset, replication or transportability of the predictive model is possible. However, changes in data 

collection methodologies (e.g. exclusion of a variable or re-categorization of qualitative variables) 

may hinder generalization. For example, in the case of an algorithm that was trained with a 

continuous variable regarding the frequency of fruit intake during the week, but in the new data set 

there are only grouped frequencies (e.g. < 3 our ≥ 3 intakes per week). In such cases, if this variable 

is meaningful for prediction, any pre-processing of this variable to try to turn it into new continuous 

values will probably decrease the overall performance of the model. 

2.3 To which regions or groups (even across time in the same place) is the original model 

generalizable? Generalizations need to take into account a few issues (König et al., 2007; 

Steyerberg, 2019): 

– Temporal transportability: when the datasets are from different periods, especially in the 

presence of seasonal diseases. 

– Geographic transportability: when the datasets are from different locations, that may not have 

the same patterns regarding the relationship between the predictors and the outcome of 

interest. 

– Spectral transportability: when the datasets have different diseases or stages of the disease. 

This is especially important if the outcome is binary disease prediction, which may have a 

wide range of severity. 

2.4 Importance of representativeness of training data. Diversity of training data is a growing issue in 

data generalization. It is necessary that the data in which the algorithm was trained contains enough 
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observations for each subgroup in which the model will be generalized, in order for the algorithm to 

learn subgroup-specific patterns (Géron, 2019). 
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Proposal: Degree of correspondence 

Generalization refers to the ability of a predictive model to correctly behave on unseen data. In 

order to test the generalization ability of a model, typically the data is split into a training set, which 

is used to fit the model’s parameters, and a test set which is used to assess whether the model 

generalizes and is supposed to be representative of the reference population. Then generalization 

can be assessed evaluating if the test really is representative of the reference population. 

We propose a metrics, that we call degree of correspondence Φ. The main idea is to try to match 

each data point in the test set with those in the reference population: after exchanging the matched 

objects we then assess if there have been any changes in the topology. 

More precisely, the method to compute the Φ is the following one: 

1. Compute the distance distribution in the larger group (e.g., reference population) 

2. Match each object in the smaller sample (e.g. the test set) with the most similar object in the 

larger sample. 

3. Then substitute the objects in the larger dataset and check if there is a significant difference 

between the pre- and post-substitution distance distributions with an equality test. 

4. The value of Φ is 1 – p-value. 

In particular, step 2 can be obtained by solving the following linear assignment problem 
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𝑚𝑖𝑛∑𝑥𝑖,𝑗 𝑑(𝑖, 𝑗),
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∀𝑗 ∑ 𝑥𝑖,𝑗 = 1
𝑖
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Where i is an instance in the larger group (reference population) and j is an instance in the smaller 

sample (test set) and d(i,j) is their distance. 

 

References 

Cabitza, F., Campagner, A., & Sconfienza, L., (Submitted). As if sand were stone. New concepts 

and metrics to probe the ground on which to build trustable AI. Submitted to BMC Medical 

Informatics and Decision Making. 

 

  



- 44 - 

FG-AI4H-I-035 

6.5 Uncertainty 

Authors: Luis Oala, Vignesh Srinivasan, Wojciech Samek 

Reference Summary 

Overview 

Modern AI systems based on deep learning, reinforcement learning or hybrids thereof are 

powerful technologies. They are also fickle technologies whose behaviour is often hard to fathom. 

This creates a risk for system failure which is of particular concern when attempting to deploy AI 

systems in health applications. 

Decades of machine learning research has produced a number of tools to enhance the so-called 

robustness of AI systems. Many of today’s research efforts around deep and reinforcement 

learning attempt to find improved ways of doing so. In this report we provide a working definition 

for robustness as well as a high-level illustration of the two potential sources of robustness risks 

for AI systems. We explain how robustness enhancing tools can contribute to making AI systems 

safer and more reliable. In addition, we identify four action areas along the life cycle of AI systems 

for mitigating robustness risks. While we are not claiming completeness we note that a breadth 

of tools are covered, the time-tested alongside the very recent. We hope this report provides 

meaningful concepts and categories for facilitating an informed and interdisciplinary discussion 

of AI system robustness in the context of health applications. 

 

Measures and Recommendations 

Data fidelity 

Data diversity [6] 

Pre-processing (zero centring, PCA [7], whitening [7]) 

Normalization (standardization, min-max scaling) 

 

Robust training 

Adversarial training [12] 

Generative methods [18,19,20,21,22, 24] 

Stability training [25] 

FAT optimization objectives [44,45,46,47,48] 

 

Robustness validation 

Cross-validation [26] 

Classical tests (e.g. t-test, F-test [27], serial autocorrelation [29, 30]) 

Information criteria (AIC [31], BIC [32], Occam-weighted likelihood [33]) 

Vulnerability tests (PGD [12]) 

FAT validation metrics [38,39,40,41,42,43] 

FAT validation toolboxes [49, 50, 51] 

 

Alarm systems 

Outlier tests (generative methods [52,53], Bayesian uncertainty [62,66]) 

Attribution methods (radient*input [54], integrated gradients [55], layerwise relevance 

propagation [56]/deep Taylor decomposition [57], perturbation-based attribution [58]) 

Uncertainty quantification (Gaussian Processes [62], aleatoric uncertainty for deep learning AI 

systems [67], epistemic uncertainty for deep learning AI systems [66]) 
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Introduction 

Modern AI systems based on deep learning, reinforcement learning or hybrids thereof are powerful 

technologies. They are also fickle technologies whose behaviour is often hard to fathom. This creates 

a risk for system failure which is of particular concern when attempting to deploy AI systems in 

health applications. 

Decades of machine learning research has produced a number of tools to enhance the so-called 

robustness of AI systems. Many of today’s research efforts around deep and reinforcement learning 

attempt to find improved ways of doing so. In this report we provide a working definition for 

robustness as well as a high-level illustration of the two potential sources of robustness risks for AI 

systems. We explain how robustness enhancing tools can contribute to making AI systems safer and 

more reliable. In addition, we identify four action areas along the life cycle of AI systems for 

mitigating robustness risks. While we are not claiming completeness we note that a breadth of tools 

are covered, the time-tested alongside the very recent. We hope this report provides meaningful 

concepts and categories for facilitating an informed and interdisciplinary discussion of AI system 

robustness in the context of health applications. 

The AI System Life Cycle and Robustness 

The life cycle of an AI system can be organized into for general steps which are visualized in Figure 

XX1. The first step comprises defining an AI system. This includes the choice of a model H, a training 

environment Φ (data) and requirements Ψ (e.g. optimization objective, evaluation metrics). Then in 

the second step the model H is trained until it fulfills the specified requirements Ψ. After the training 

has concluded the model is typically validated in step three. After successful validation the model 

can then be considered for deployment in step four. 

In the words of Peter J. Huber robustness can broadly be understood as a model’s “insensitivity to 

small deviations from the assumptions” [1] that were initially made in steps one and three. While 

useful this definition appears too narrow for the setting, we regularly find ourselves in with modern 

AI systems. It is often not even known what assumptions can be made when working deep learning 

AI systems. Thus, a broader definition is needed. Thomas G. Dietterich advances a robustness view 

that distinguishes between how an AI system behaves in the face of known unknowns and unknown 

unknowns [2]. Stuart Russell, Daniel Dewey and Max Tegmerk group similar concerns under the 

term validity. They point to two relevant dimensions of robustness evaluation: the environment and 

requirements under which an AI system operates [3]. For this report we utilize the following working 

definition of robustness, drawing from the previous views: robustness is a desideratum we place on 

an AI system to not commit any gross, unexpected errors under slight changes of the environment Φ 

or to at least handle them benignly, e.g. by letting a human AI system operator know that something 

unusual has happened. As we later explain in detail contributions to enhanced model robustness can 

be made at each step of the AI system life cycle. Robustness during step four, deployment, is of 

particular concern when considering the application of AI systems. Following the analysis of [3] 

robustness risks at the deployment step can originate from two potential sources: 
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– First, it is possible that the environment Φn in which a model operates is different from the 

one Φm it was calibrated in. For example, it has been shown that standard convolutional 

neural networks used for image classification are not invariant to common perturbations like 

blurring [4]. 

– Second, it may turn out that the requirements Ψm we originally specified were insufficient to 

capture some behaviour we actually care about. This might mean we need to come up with 

new evaluation metrics to capture the erroneous behaviour and make it visible. For example, 

new metrics are actively being researched to avoid racial and gender bias in image 

classification models [5]. 

 

Figure XX1 – AI system life cycle and possible sources of robustness risk 

Figure XX1 describes the life cycle of an AI system and the two possible sources of robustness risk. 

In Step 1 the environment Φm (training data), requirements Ψm (optimization objective, evaluation 

metrics) and model H for the AI system are decided upon. Then in step 2 the AI system is trained 

until the requirements Ψm are fulfilled. Step 3 comprises validating the AI system on test data from 

the same distribution as Φm. Finally, in step 4 the model is deployed. During deployment two 

possible sources of robustness risk can be identified. Source 1 constitutes changes in the 

environment, i.e. a new type of data the model has not seen during training. Source 2 comprises 

misspecifications of the requirements that were used for model training, e.g. we might have failed to 

account for the fact that no discrimination should take place on account of a person wearing a hat or 

not. 

Four Action Areas for Enhancing Robustness 

We grouped the available tools to enhance the robustness of an AI system into four action areas 

along the life cycle steps. As visualized in Figure XX2 these four groups comprise data fidelity, 
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robust training, robustness validation and alarm systems. In the following we will explain these in 

detail and list available tools for each action area (see Table XX1 for an overview of all tools). 

Data fidelity can be understood as imposing desiderata on the data that is being used for training an 

AI system. This can take the form of diversity criteria to mandate a balance with respect to certain 

features like age, socioeconomic status or race. The datasheets approach proposed by [6] is a case in 

point. Datasheets would summarize dataset key statistics along with usage recommendations and 

aspects that users of this dataset should be aware of. Another, and often used, data fidelity tool is 

pre-processing and normalization. This is commonly used to ensure that input data during 

deployment lie in the same range as during training or to satisfy certain modelling assumptions, e.g. 

uncorrelated inputs. Popular tools include zero centring data (each input dimension will have a 

mean of zero), principal component analysis (commonly used for decorrelating data) [7], whitening 

(scaling decorrelated data to unit variance) [7], standardization (normalize scales across 

dimensions) and min-max scaling (normalize data to ranges [-1,1] or [0,1]). 

 

Figure XX2 – AI system life cycle alongside robustness areas 

 

Figure XX2 illustrates four steps of an AI system life cycle alongside four possible action areas for 

enhanced robustness. We can impose requirements on the fidelity of the data, e.g. by restricting the 

type of data a model can take as input. Another strategy is to design the training procedure in a way 

that robustness enhancing methods are being used, e.g. adversarial training. In addition, we can use 

the validation step in the AI system workflow to probe the model in new environments or under 

new requirements. Finally, we can mandate the use of different alarm systems that indicate to an AI 

system operator when the AI system is confronted with an unknown situation during deployment. 

Robust training comprises a group of methods that help exposing an AI system to changes in the 

data environment that would otherwise be likely to induce robustness risks during deployment. In 

this way the AI system can be seen as “getting used” to the types of environment changes that 

would otherwise cause it to break. An important tool in this action area is adversarial training 

[8,9,10,11] which aims at reducing an AI system’s vulnerability to adversarial examples: data points 

that to humans are visually indistinguishable from original inputs but the AI system nevertheless 

misclassifies. Under adversarial training such examples are included in the training data so that the 

AI system can learn to treat them correctly. Currently, the most popular method follows [12]. 

Another strategy to achieve this is by employing generative models. Generative algorithms 

[13,14,15,16,17] model how the data was generated before classifying it. They are also an effective 

alternative for protecting AI systems against adversarial attacks [18,19,20,21,22]. However, most of 

these methods have been found not to work effectively at protecting the AI system classifier. An 

attacker can specifically target the weakness of the reconstruction algorithm and craft an adversarial 
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example for the AI system classifier [23]. This problem can be alleviated by employing Langevin 

Dynamics (LD) [24]. Finally, robust training can be improved by employing stability training. The 

aim of stability training [25] is to improve robustness against data distortions without compromising 

classification performance. Instead of using distortion instances in the training data, stability 

training generates images that are disturbed by Gaussian noise and feeds the images to the network 

at the same time as the reference samples. The network then has the following task: make the 

outputs for the disturbed image similar to the outputs of the reference images. This implicitly forces 

a restriction on the sensitivity of a model to small perturbations in the input data. 

Robustness validation features a set of tools aimed at verifying the performance of an AI system. 

This can include new data environments, evaluating the model under new requirement metrics or 

exposing it to a stress test for specific edge cases and vulnerabilites. A simple strategy for obtaining 

a less noisy estimate of an AI system ’s predictive performance is so called cross-validation. Under 

this evaluation regime the available test data from Φ is partitioned into groups. The AI system is 

then trained on a subset of the groups, alternating the test group for each training run for all possible 

choices of a test group [26]. A major drawback of this approach is the computational burden it 

incurs for models with expensive training procedures which oftentimes is the case for deep learning 

AI systems. In the realm of statistical scholarship hypothesis testing forms an important 

methodological pillar. Many of the popular data modelling approaches in this field have been 

studied for decades and, owing to their analytic accessibility, in many cases their behaviors are well 

understood. The ordinary least squares (OLS) estimator is such a well studied approach which 

boasts a plethora of tests to better interpret the resulting model. This includes tests for hypotheses 

on individual regression coefficients, e.g. the so called t-test, or linear combinations of hypotheses, 

e.g. the F-test, [27] as well as tests for properties like conditional heteroskedasticity [28] or serial 

autocorrelation [29,30]. This level of model understanding and interpretation has not carried over to 

deep learning based AI systems. An important reason for this absence is that deep learning AI 

systems typically do not lend themselves to the type of analytical treatment that is possible with 

hallmark approaches from classical statistics. Some theoretically motivated model selection criteria 

that have been carried over from statistical theory to the deep learning setting include variations on 

the log evidence like Akaikes’s information criterion (AIC) [31], Schwarz’s Bayesian information 

criterion (BIC) [32] or the Occam-weighted likelihood used in Bayesian model selection [33]. 

Table XX1: Summary overview of robustness enhancing tools per action area 

Action areas Tools 

Data fidelity – Data diversity [6] 

– Pre-processing (zero centring, PCA [7], whitening [7]) 

– Normalization (standardization, min-max scaling) 

Robust training – Adversarial training [12] 

– Generative methods [18,19,20,21,22, 24] 

– Stability training [25] 

– FAT optimization objectives [44,45,46,47,48] 

Robustness validation – Cross-validation [26] 

– Classical tests (e.g. t-test, F-test [27], serial autocorrelation [29, 

30]) 

– Information criteria (AIC [31], BIC [32], Occam-weighted 

likelihood [33]) 

– Vulnerability tests (PGD [12]) 

– FAT validation metrics [38,39,40,41,42,43] 

– FAT validation toolboxes [49, 50, 51] 
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Action areas Tools 

Alarm systems – Outlier tests (generative methods [52,53], Bayesian uncertainty 

[62,66]) 

– Attribution methods (radient*input [54], integrated gradients [55], 

layerwise relevance propagation [56]/deep Taylor decomposition 

[57], perturbation-based attribution [58]) 

– Uncertainty quantification (Gaussian Processes [62], aleatoric 

uncertainty for deep learning AI systems [67], epistemic 

uncertainty for deep learning AI systems [66]) 

Furthermore, adversarial vulnerability tests can be used to simulate attacks on the AI system. There 

are several attacking strategies developed to pose a threat to a AI system. Almost all of them follow 

the principle that the classification should be changed with only minimal modification of the input. 

Projected Gradient Descent (PGD) [12] is in its core the fundamental version of a first-order attack. 

Other attacking strategies like Carlini-Wagner (CW) [34], Momentum Iterative Method (MIM) 

[35], Elastic-Net Attack against DNN (EAD) [36] or Fast Gradient Sign Method (FGSM) [37] can 

be considered to be variations of this attack. Finally, new requirements can be introduced to probe 

the trained AI system. These new metrics can for example be drawn from insights of so called fair, 

accountable, transparent (FAT) AI research which offers various approaches to formalizing fairness 

and biases [38,39,40,41,42,43]. There also exist proposals how to incorporate such FAT 

measurements in AI system training and applications [44,45,46,47,48] which can be utilized in the 

robust training action area. Lastly one should note that FAT research has already produced a 

number of software repositories aimed at benchmarking an algorithm’s susceptibility to problems of 

bias and fairness, for example AI Fairness 360 [49], Python Fairness Package [50], or TuringBox 

[51]. 

Alarm systems are important to monitor the AI system during deployment. Their purpose is to alert 

an AI system operator when something unusual is happening. Outlier tests are a case in point. Such 

tests signal when input deviates strongly from the types of input the model has been trained on. 

Generative models can be used to detect outliers for a given data distribution [52,53]. Any input 

lying on the manifold of the training data distribution will be given a high score by the generative 

AI system, as the model has seen data from this manifold during training. Conversely, an input 

which is very different from the training data will be given a low score, meaning that it is an outlier. 

Attribution methods can also be used. Attribution methods typically deal with methods that aim to 

map input features to relevance scores that reflect the features’ contribution to the output of a 

model. As an alarm system these methods can be used to signal when the model bases its decision 

on input features very different from the ones a medical expert would use. Popular schemes include 

gradient*input [54], integrated gradients [55], layerwise relevance propagation [56]/deep Taylor 

decomposition [57] or perturbation-based attribution [58]. Finally, uncertainty quantification 

methods may be employed to signal uncertainty in the inputs - so called aleatoric uncertainty – or 

uncertainty in the model decision - so called epistemic uncertainty – as well as unfamiliar inputs, 

which is related to epistemic uncertainty. Classic Bayesian modelling with Gaussian Processes 

provides built in epistemic uncertainty estimates [59,60,61,62,63]. As deep learning AI systems are 

not as amenable to an analytic treatment as Gaussian Processes numerous approximating treatments 

have surfaced [64, 65, 66]. A popular epistemic uncertainty quantification scheme for deep learning 

AI systems, called Monte Carlo dropout, was proposed by [66]. Aleatoric uncertainty quantification 

for deep learning AI systems has already been sketched out as early as 1994 by [67]. 

Recommendations 

To enhance the robust performance of AI systems in a real world application checks and safety 

measures, as presented above, should be incorporated at each step of the AI system life cycle. 
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Below we provide a summarized check list for important tools in each step of the AI system 

workflow. 

Ensuring data fidelity can help to enhance the robustness of AI systems. Through pre-processing 

and normalization, the input data can be brought into a shape that accommodates modelling 

assumptions such as decorrelated inputs or inputs in a certain value range. Thus, an AI system 

should include the following data fidelity protocols 

– If possible, restrict input data during deployment to be similar to input data during training 

– Ensure that input data adheres to the modelling assumptions by e.g. using zero centring, PCA, 

whitening, standardization or min-max scaling 

– Evaluate and ensure the diversity of the data as per the requirements of the specific task, e.g. 

racial diversity 

The robustness of AI systems can be enhanced by employing robust training protocols such as 

adversarial training, generative models or stability training. Thus, it should be ensured the following 

tools were used 

– Adversarial training using PGD attacks to shield against adversarial vulnerability 

– Generative models 

– Stability training to shield against common data perturbations 

AI systems obtained after robust training should also undergo rigorous robustness validation 

before going into deployment. The following tools should be in place for the validation step 

– Cross-validation 

– If the model allows: hypothesis testing 

– Adversarial and perturbation stress tests 

– Pending suitably labelled data FAT metrics should be employed to evaluate task specific 

requirements that go beyond the original optimization objectives 

Alarm systems are critical to making sure that failures are sufficiently signalled by the AI system. 

Any error or malfunction should be caught with the help of available tools. To this end the 

following should be in place 

– Outlier test for inputs 

– Include integrated gradients, or another attribution method of your choice, so that a human 

can verify the basis of the AI system decisions 

– Include an uncertainty quantification tool, like Monte Carlo dropout or an aleatoric proxy, so 

that the AI system’s decision confidences are signalled to the AI system operator 
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6.6 Performance 

Authors: Federico Cabitza 

For task-dependent performance measures please refer to the TDDs of the individual topic groups 

of FG-AI4H. 

Novel Decision-Informed Metrics for Medical AI Validation 

Problem 

– Many metrics and measures to assess the performance of predictive (classification) models 

embedded in Medical AI (MAI) exist and they have been proposed before the AI community 

and the medical community to understand the value of prospective ML-based decision 

support tools. 

– Besides their number, these metrics are either trivial (standard accuracy), or prone to 

bias/distortion (e.g., class unbalance), or to misunderstanding (e.g., AUROC, logloss). 

– Generally speaking, medical doctors don’t understand these measures (besides accuracy). 

Moreover, these measures are not practice-aware (or informed by medical practice). 

– In short, we need a simple (one number), intuitive notion of “how good a decision support 

is”. 

Solution 

– Three novel metrics are proposed to evaluate the 'pragmatic validity' of a model w.r.t a 

Benchmark Test Dataset for a specific discriminative task and these metrics can guarantee 

merits beyond the typical ' statistical validity' norm used for model validity evaluation. 

– It looks as at a data driven approach to assess 'human perceived complexity' and taking it into 

account for evaluating AI model validity. 

– In short, an 'accuracy' metric (H-accuracy), a 'representativeness' metric (Pi-

Representativeness) and a 'Robustness' metric (Ratio of H-accuracy and Pi-

Representativeness) are proposed. 

H-accuracy (Ha) : a novel formulation of accuracy to represent the practical value and to assess the 

machine classification model with respect to any Benchmark Test Dataset for which we collect 

some additional information based on true labelling (priority of classes to predict, minimum 

acceptable confidence, case complexity). 

– H-accuracy helps to curb the model drift towards 'over diagnosis'. 

o It can seen as a balanced, class and case weighted expression or measure of accuracy of 

a machine learning model 

o It is equivalent to 'Standardized Net Benefit' (very important measure to balance costs 

and benefits of diagnostic tools )measure (Kerr. et al, 2016) 

– The main novel contribution of H-accuracy is that it takes into consideration- the complexity 

of the cases of the test data set. This formulation of accuracy is safe w.r.t to the limitations 

that affect other common measures of model performance. 

– For H-accuracy implementation, annotation should set or code the following 3 types of 

information: 

a) The threshold of minimum confidence the model should have to provide advice (to 

penalize right prediction that have low confidence) 

b) The priority of positive class w.r.t negative class (preference between sensitivity and 

specificity) 
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c) The complexity of each case in terms of rarity, difficulty, impact of missing, etc 

– H-accuracy is completely backward compatible- In the formulation, if one parameter (TAU) 

is set to 50% then it is equivalent to regular accuracy. Then if 'P' (priority) parameter is set to 

50% then it is equivalent to balanced accuracy and if 'complexity' parameter is set to constant, 

it is then it is equivalent to regular accuracy. 

– H-accuracy can be tailored to a specific diagnostic task by tuning the 3 parameters to make it 

more suitable to the preferences of the domain experts. The parameter configuration can be 

local (e.g. hospital setting) or for a specialist community, scientific society or association. 

That sense it can be considered as a parametric version of accuracy 

Pi-Representativeness (Pi): a simple and effective way to calculate the representativeness of a 

dataset (e.g. training dataset) w.r.t another dataset e.g. benchmark dataset representing reference 

population) 

– Pi-Representativeness is an alternative way of comparing data set distributions equality tests 

like Kolmogorov-Smirnov test 

– Pi-Representativeness helps us compute a measure of how similar the training dataset is to the 

benchmark test dataset 

– Pi-Representativeness can be used as a point-of-care interpretation tool to get a measure of 

robustness because here the accuracy score is normalized with a measure of how fair was the 

competition. 

– Pi-Representativeness is used to understand the extent to which the test data set is 

representative w.r.t the reference population and here in some way the common biases like 

gender bias, sampling bias are getting minimized because you are verifying that the datasets 

used are representative of the reference population 

Robustness=(~Ha/Pi): A ratio of H-accuracy and Representativeness as a simple measure of 

Robustness and generalisability of the model 

– If the training set and the benchmark test set are very similar, i.e. Pi=1, accuracy estimates are 

not reliable and hence then we cannot be sure that the model will have the same performance 

given a completely different data set 

– If the training set and the benchmark test set are significantly different, i.e. Pi=0, then 

accuracy estimates are reliable and that the model skill will be maintained given new datasets 

in real-world conditions 
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